Monitoring Java enviroment /
applications

UroS Majcen
uros@quest-slo.com

hroug

QUEST
SOFTWARE®

Simplicity At Work™

: hroug
JavaisiEverywhere

Javain Mars Rover

With the help of Java Technology, and the Jet

Propulsion Laboratory (JPL), scientists can control the
Mars Rover all the way from planet Earth.

The Blackberry, Android and many other PDAs and cell
phones use Java as an operating system.

Many car companies including BMW have on-board
computer systems that are run by Java.

QUEST
SOFTWARE’

. 2
Simplicity At Work™ _

Presenter�
Presentation Notes�
Because Java is portable – Java applications are running all around us on devices you may not normally associate with a computer!

For example, the famous Mars Rover was controlled in real time, from earth, by a Java application written by NASA scientists.

The Blackberry device and other mobile phones and PDA’s run Java as do many on-board computer systems in today’s cars.

The Bottom-line, and the beauty of Java, is it is not restricted by the platform or operating system it runs on. Java can run on Windows, Apple, Unix, or proprietary mobile systems such as the Blackberry.�

http://mars.jpl.nasa.gov/mer/gallery/spacecraft/browse/rover1_br.jpg

hroug

Application Design
and Performance

Simplicity At Work™

Origins of Poor Performance

Majority of Java performance

problems arise from:
— Memory-Related Problems

— Algorithm-Related Problems

The most dramatic improvements
In performance are often made at

the application level

— Fast hardware and highly tuned

QUEST

JVMs cannot overcome the
iInherent limitations of a poorly
designed application

SOFTWARE’

Simplicity At Work™

hrvatska udruga ora orisnik
Types of Allocated Objects
A A Reachable (Live)
A /A Reachabla (Loitering)
[A O Not Reachable
A
A
& A
A
(o}
O
A o
L A
A X A
Q.
of a4
A 0
(o)
n A
A A <
A
Root Sat
Allocated Objects In the Java Heap
Loitering Objects in the Java Heap

Presenter�
Presentation Notes�
The key here is that throwing hardware at the above problems won’t solve it!

�

hroug

Framework-Based Development

Java development is undertaken in the context of
application frameworks:

— JFC/Swing — J2EE (Servlet/JSP/EJB)

Several advantages:

— Programmer Productivity
— Reduced Development Time
— Software Correctness

QUEST
SOFTWARE’ 5

Simplicity At Work™

hroug

Framework-Based Development

Unfortunately, little consideration is given to the performance
characteristics of these frameworks

— Space and time costs
— Scalability

Abstraction versus Implementation

— To achieve good performance, you have to have some
iInsight into the underlying implementation

You need a toolset that provides a deep level of insight into your
Java software

QUEST
SOFTWARE’ 6

Simplicity At Work™

hrounQ

Memory and Performance
Issues In Java

Simplicity At Work™

hroug

Memory Safety in Java

Memory safety was a key aspect in the design of...

— The Java Language

« Absence of any form of pointer arithmetic
e Can not directly reclaim object memory

— And the Java Virtual Machine (JVM)

» Bytecode instruction set
* Runtime checks (array bounds, reference casts)
« Garbage collection

QUEST
SOFTWARE’ 8

Simplicity At Work™

hrounQ

Memory Safety in Java

Entire classes of memory-related problems were eliminated
— Buffer overruns

— De-referencing stale pointers

— Memory leaks

However memory management issues remain
— Loitering Objects
— Object Cycling

Either of these issues can easily undermine the performance of
your application

QUEST
SOFTWARE’ 9

Simplicity At Work™

Rrouw

JVM Runtime Data Areas

Heap \
— The common memory pool where all objects and arrays are Heap \
stored
Thread Stack(s)
— One stack per thread of execution Thread
— Each stack consists of a series of method frames (one per Stack
called method) which contain the method arguments and
return value, the local variables within the method and a Thread >
bytecode operand stack for intermediate results Sl
Method Area
— Maintains the data structures for each loaded class in the JVM — IVM
Area
]
(Java program) (Java program
executing and JVM)
within the JVM executing

SOFTWARE’

Simplicity At Work™

10

hroug

Java Memory Management

Central to Java’s memory management subsystem is the notion of
garbage collection (gc)

— Removes objects that are no longer needed

— Undecidable in general, so Java uses an approximation...

 Removes objects that are no longer reachable (accessible to the
program at the beginning of a garbage collection cycle)

— The reachability test starts at the heap’s root set

QUEST
SOFTWARE' i

Simplicity At Work™

hroung

hrvatsk

JE—

=

Reachable Objects

Elements within the root set directly refer to objects within the heap of the
JVM

e L L

— —] —= —] Root Set

= Reference variables within those objects refer to further
objects within the Heap (indirectly reachable from the
Root Set)

QUEST
SOFTWARE' P 12

Simplicity At Work™ ol

g

hroug

Reachable Objecfs & GC

At the beginning of a GC cycle, objects within the heap can be
considered to be in one of two progressive “states”.

— Allocated
« EXists within the JVM’s heap
— Reachable

» A path exists (directly or indirectly) from a member of the root
set, through a sequence of references, to that object

QUEST
SOFTWARE’ 13

Simplicity At Work™

hroung

hrvatska udruga oracle korisnika

Reaﬂ'e Objects & GC

At the
beginning of a
GC cycle,
objects that
are allocated
but no longer
reachable are
reclaimed by
the Garbage
Collector

~ QUEST
SOFTWARE’ ’
Simplicity At Work™

hroug

What is a “Memory Leak” in Java ?

Memory leaks (as traditionally defined in C/C++) cannot occur in
Java

— That memory is reclaimed by the Garbage Collector
However, Java programs can still exhibit the macro-level
symptoms of traditional memory leaks

— Heap size seemingly grows without bounds
Occurs when objects that have outlived their usefulness to the

application remain within the heap through successive garbage
collections

QUEST
SOFTWARE’

i
Simplicity At Work™ 5

hrounQ

What Is a “Memory Leak” in Java?

We can extend the set of object states to three:

— Allocated
« EXists within the JVM’s heap

— Reachable

» A path exists (directly or indirectly) from a member of the root set,
through a sequence of references, to that object

— Live
* From the intent of the application’s design, the program will use the
object (meaning at least one of its public fields will be accessed and/or

one of its public methods will be invoked) along some future path of
execution

QUEST
SOFTWARE’ 16

Simplicity At Work™

hroug

Memory Leaks: C/C++ vs. Java

Memory leak in C/C++

— The object has been allocated, but it's not reachable

< malloc()/new, but forgot to free()/delete before overwriting
the pointer to the object

“Memory leak” in Java

— The object is reachable, but it’'s not live

* The object has reached the end of its designed lifecycle and should
be reclaimed, but an erroneous reference to it prevents the object
from being reclaimed by the GC

— Object is reachable to the GC, but the code to fix the leak may not be
available to us

* e.g. private reference field within an obfuscated class that you
don’t have the source code to

QUEST
SOFTWARE' '

Simplicity At Work™

hrvatska udruga oracle korisnika

What s a “ eak” in Java?

Memory leak in
C/C++ (handled
by JVM’s GC)

“Memory leak”
In Java

~QUEST
SOFTWARE®

.................

hrounQ

Loitering ODbjects

The term “Memory Leak” has a lot of historical context from
C/C++ and it doesn’t accurately describe the problem as it
pertains to Java

New term: Loitering Object or Loiterer

— An object that remains within the Heap past its useful life to
the application

— Arise from an invalid reference that makes the object
reachable to the GC

QUEST
SOFTWARE’

i ;i 1o
Simplicity At Work

hroug

Loitering Objects

Impact can be very severe
— Rarely a single object, but an entire sub-graph of

objects
A single lingering reference can have massive memory e
impact (and a significant performance impact) 7
— Overall process requires more memory than necessary é
— JVM’s memory subsystem works harder Unintentional ——
— In the worst case, your Java application will throw an "eference [
OutOfMemoryError and terminate \

QUEST
SOFTWARE’ 20

Simplicity At Work™

hroug

Failurede.Remoeve Stale Object References from™
Data Structures

Object obj = new BigObject();
set.add(obj);

I // Object 1s at the end of i1ts life, but
obj = null; // we forgot to remove i1t from the set !

Object obj = new BigObject();
set.add(obj);

set.remove(obj) // Remove the object first !
obj = null;

QUEST
SOFTWARE’

Simplicity At Work™

21

hroug

Reference Management

The key to effective memory management in Java is effective
reference management

What undermines effective reference management ?
— Lack of awareness of the issue
— Bad habits from C/C++ development
— Class Libraries and Application Frameworks

« lll-defined reference management policies
* Encapsulate flawed reference assignments
* Tool (IDEs and others) generated software

QUEST
SOFTWARE’ 22

Simplicity At Work™

hroug

Object Cycling

One of the principal causes of performance loss in Java is the
excessive creation of short life cycle objects

— ODbjects typically exist only within the scope of a method

Performance loss is due to...

— Memory allocation within the JVM heap

— Obiject initialization via chain of constructor calls
— Enhanced garbage collection activity

QUEST
SOFTWARE’ 23

Simplicity At Work™

hrounQ

Object Cycling

As a performance investigator, you want to identify those
methods in your application-level use case that are

creating objects that are soon reclaimed by the garbage
collector

They are your first candidates for refactoring to improve
performance

QUEST
SOFTWARE’

F i 24
Simplicity At Work

hroung

QUEST
SOFTWARE"

JProbe

QUEST
SOFTWARE®
Simplicity At Work™

Presenter�
Presentation Notes�
How can we help �you get more?�

hroug

The JProbe Java Profiling
- ©JProbe’

Solution

Primary Capabilities

QUEST

Identify and resolve memory allocation issues to ensure program
efficiency and stability

Identify and resolve code bottlenecks to maximize program
performance and scalability

Identify unexecuted lines of code during performance testing to
ensure full test coverage

Enable performance test automation and metrics reporting to
boost productivity and save valuable time

SOFTWARE’ 26

Simplicity At Work™

Presenter�
Presentation Notes�
We know JProbe has all these awesome capabilities….but now overall Java performance profiling just got more efficient through improved data JProbe is the leading Java profiling solution in the market that resolves memory allocation issues, code, bottlenecks, and unexecuted lines of code. JProbe 8.0 continues to deliver this same depth of capabilities, but we believe now in a more streamlined and efficient way enabling you to deliver high quality, production ready applications even faster and with more confidence than ever before!

�

| —

Development Best Practice Workflow

\
OPTIMIZE
/

Unit Performance Testing + Review Transaction Profiling Results
- Memory, Performance & - Triage Performance Issues

Coverage Profiling - Tune Configuration Environment

Integration Performance + Send Code Problems to Dev for Fooes

Unit Test & Review Testing
Single Request Transaction
Tune & Optimize Code Profiling

— - road Performance Pre-deployment

us ' Load Transaction Profiling » Business Case Testing
» Performance &
Continuous Integration
Development

and Automation Scalability Tuning

Team Production

_ Application
UK . Version
Development %94 Control

Team (Team Coding)]

Ma lmr

Offshore
Development
Team

Inefficient, Problematic, or Untested Code Detected:
Return to Development

21

hroug

hrvatska udruga oracle korisnika

e EdL Popam Soscsnat Tools Dissisy rcow Help

2070 vt - EE

- ¥, 700 227427 (S ‘ 7 &)
S a1 -
B0 | en G (R, ES (I
escrec e e s a1 owm
s mo s omowm
#uings, 5 metotics 25 S
e) S0 s
[e ey
Devwa{ioes_| cots_[Boutec
e e e

JProbe Memory Debugger o e

JProbe Profiler R P~

Emm:_mm' || vasitn Classes: 281422
. Gourt Memony
Fackage lags Coent Chenge emary frrstiend
o 269 gion. o vz 4,972 (ee.ey e3,3m
IProbe Coverage e mome T mems
0 SUR EVE UL EIECD0NS HESRMapEERt 92 { 3A.2 Py 1,880 [FP.0%)
£t sum jiva bl coliecbiors Hashiap % +3 1,056 [2L.2¥)
o Sn v B S BOnG Linke dLESERtry v T dedt)
oM SUn v Ubl collecBions HashMapSHashiber -5 168 [J.4%)
camumencunyioors senviet LocsleFormat -5 24 [0.5 z
com sun java ubl collecBons Absbacilisthir . 120 [2.4v) —-
s i o A oations. Hushet AR R T]
com sun java bl collections Hashiagi az B 0.in) +4 | | [T
ctacsar wawmsa 132 piasia
W uninck 2883 Bakery WThewad Wal) Boy' (d. 201°3) watling for nolify on Bank istanc
@ ook 2997 Daker e Brock) Baber . 2997) blocked wadting fo scuuire Bal
Bon i B TNk Stalfc Thieard Taker* i 2097) ha beeen blocked ol
e Wt By i 2913 recesend netify on Bark istance
[l unock 3670 Boek: (Thenid Bock) Doy (it 797 3) biocked wating o #¢quire Bani
f ? etk 2081 Dackflock |
T ' X
g 3
2002 | E 1 ==

- Results - Deadlock
product T :
i

T | Sowrte M
oy) | L]
Baer Bakernund |]| BarikSLock (2001) Bakery (2063

FINALIST 2003

QUEST _
SOFTWARE’

Simplicity At Work™ g 28

Presenter�
Presentation Notes�
Works with virtually any server

Supports all major IDEs

Eliminates expensive memory recycling and reduces overall memory consumption

Fine tunes data collection with advanced API

Predicts problems before they happen

Improves applications’ performance�

Pinpoint underlying causes of

memory leaks

Dramatically reduce memory

consumption

Quickly identify methods that
create excessive numbers of

short-lived objects

QUEST
SOFTWARE®

Simplicity At Work™

View E0f Display Window Help
Farfiet | avey SeCond * | Shuw History| M

Manvory (i)

| [Vx e

VGOUN

100§

0 . . .
oo 2o oa:40 0100 20 01:40 ozo0 X 0240 [ERELH 0320 0x40 04

Tirmer

| Istance Summary | Gorbogte Morior |
|99 Finer Classos: [] Visibhe Classes: 991 (901
Colint Mamnory
Fackage | Class | Count Chango Memony Changs
Total 1,500 {100.0%) -6, 670 £ (100, 0%} 13,499.32
charl] ; 5018228 (9.0%) 1960524/
1,1BER (17%) |
Wew o0 Tool Dinpley Windew bisip 0416 (11%)
Cukor i Crmation Time = FE2= e S RO e (5.8%) T (0.8%)
| i 16,761 (4 7%) V4076 356 (351%) -9,80036
10,006 (26%) 1712 130672 (02%) 20544
B8 Husrtabienain o sEacies BE 8 e 035 4ac 3 WEST (2EW) -IBB 1307A8 (02W) 47 37R
10857 (28%) 3B 150084 I 47376
{8 suscini 1) 02266748 [9426 (24%) 4193 19252 0.3%) 556
8423 (17%) 12846 (0.7%) L1
6,038 (1.6%) 12078 (0I%) 6138
5301 (15%) WEE5T M5W 22
5,188 (1.3%) T44 B4E (03%)
5156 (1.3%) 13 61672 (01%) 3396}

L ————————————

nstance ID Sor(Covaton whemwr hetancs I SoaChadDataSae e I66ADAE

29

Presenter�
Presentation Notes�
New Feature: Aggregate Footprint Analysis

�

hroung

hrvatska udruga oracle korisnika

J—
JProbe Profiler

2, Call Graph: e G n‘EI‘ e

Uncover performance
bottlenecks

Gather line-level metrics on
your running program

Deadlock Detection

QUEST
SOFTWARE’

Simplicity At Work™

Average Averag

Cumulative Method ¥ ¥

Package Marne . ’ curnulative Methion
Time Time . .

Time Tirn

Methods: |Dnuhlenrray.<init>0

[Root 1 71.21 {100 0.00 [0.0%) (10 -

v ANT-Eventdueus 1 1463.61 [70.7%) 0,00 [0.0%) 1463.61 [70.7%) 0,00 (A

vl DoubleAnay.adde 17142 1434.47 ([69. 137.41 [6.6%) 0.08 [0.0%) 0.01 [O.

W MainFrame$2 ack 10 1397.44 (6 3.61 [0.2%) 139.74 [6.7%) 0.36 [O.

= o oy 2 o 5 oo 2 . 2

I} Q, Source: DoubleArray,java o g |
o

v

|« L

e ‘ calls ‘ Line ‘ Cumulative ‘ Line | Cumulative ‘Suurce
= Time Time Ohjects Ohjects

ez
40) publ. int i) {
4 18.23(1.5%) 18.23{1.4%) 0¢ 0.0%) 0(0.0%) Double new_data[] = null:
42
43 19153 4864 (42%) 114.30(8.8%) 2(0.0%) 2(0.0%) checkBounds (i) ;
44
45 19153 24.07(2.0%) 24.07 (1.8%) 0(0.0%) 0(0.0%) if(i > data.length) {
46 34186 4374(3T%) 43T4(34%) 0(0.0%) 04 0.0%) if (type == LINEAR)
47 17078 89768 (75.2%) 997.69 (68.6%) 17078 (100.0%) 17078 (100.0%) new_data = new Double[i];
48 elge if(type GEOMETRIC)
49 new_data = new Double[data. lef
50
81 17078 50.26(4.2%) 50.26(3.8%) 0¢ 0.0%) 0(0.0%) Systew.arraycopy (data,0,new data,
52 17078 2102 (1.8%) 21.02(1.6%) 0¢ 0.0%) 0(0.0%) data = nev_data;
53 }
54
55 19153 57.04 (4.8%) 103.97 (8.0%) 0(0.0%) 0(0.0%) verifyCopy():

hroung

hrvatska udruga o e korisnika
™ Coverage Browser: snapshot_1_1 o =] 4]
- - View Edit Tools Window Help
e I ltl al I u antl u nte Ste e % Missed % Missed % Missed % writh % Missed % with
Classes Methods Lines Line Data Gonditions Condition Data
El | | L
@acum.acme 0o 182l 27zl 1000 3zo 100.0
CO e 2 stockseriet o oo 256 100.0 3330 100.0
@SIDEKDEIE - 100l 54] 1000 00 100.0
@SIDCRDEIEJDOM - s0.0 [N a5.0 100.0 s0.0 100.0
- PageCachamap s 0.0 0.0 100.0 s0.0 N 100.0
Merge Ilne Ievel da.ta from s ' e e o o
—-—
] ’7 ,—
d Iffe re nt te St ru n S e s
Method % Missed % Missed
e | Calls Lines Caonditions e
|
- main(String[l) 0 1000 I 1000 I :omnoacme.StockDataDOM
e l I e rate re O rtS I n =init=(String} 0 0a com.acme. StockDatalDOM
] getSiring) 0 0.0 com.acme.CachedPage
doGetjavax.semlethitn. HitpServetRequest,... 5 333 com.acme.StockServet —
I
IoacStock] [Source: Profilerjava o T e o T Fe E
eX O r Hethods: | Profiler.createSettings) -
1 |Line | Calls | Source |
pacheTd 26 o $ting’ sourcapath opValue (" =]
= . . 277] getSertings() . setApp? sppname, spp_srgs, working_dir, classpsth, sourcepath, true):
278)
79
280 1|static public void main{String[] args) {
281 1 JPApplication. appl.displayVaitDialog("/con/klg/iprobe/profiler/inages/profilersplash. gif"} ;
282
283 1 Profiler profiler = new Profiler()’
284 1 profiler.registerExtension{JPHessage. PROFILE, "ipp”):
285 1 profiler.registerExtension(JPMessage. HEAPDUMP, "jph"):
286
287 1 JPFrame frame = new JPFrame("main”, profiler.gethction("exit")):
288 /% see PRF 7426, use workaround for now
260 frame. setCursor (Cursor. getPredefinedCursor (Cursor. VAIT_CURSOR)) ;
280 L7
291 0 profiler.frame = frame;
292 i} profiler. inithait
293 0 frame.add(profiler.
294 0 frame.
295 o frame / 60% of screen size
296 o frame.]
297 0 profiler.setWaitCursor {true) ;
298 a profiler.updateMernb :
298 (] JrApplication.appl.c thialog() ;
300 =
Legend
Hit Lis - D Missed Line: - g
om.klgjprobe.profiler.Profiler.createSettings()

QUEST
SOFTWARE®

Simplicity At Work™

R

Presenter�
Presentation Notes�
Big thing with Coverage:

No need to recompile (compared to Clover)

Automate with Ant tasks

Conditional Coverage:

Check internal logic for conditions

�

hroug

hrvatska udruga oracle korisnika

JProbe Architecture

eclipse

IDE

hh-‘"h""'- b""-".'-.

developer

QUEST

SOFTWARE® i 32
Simplicity At Work™ A

hroug

Garbage Monitor

|dentifies the type and number of objects
reclaimed after each garbage collection and
their allocation points within your code

Those methods are the candidates for
refactoring to lessen the excessive creation of

short-lived objects

QUEST
SOFTWARE' &

||||||||||||

hroug
Achieving Faster Performance

Most frequent criticism of Java

Nature of the Java Execution Model

— Platform Independence
— Runtime Checks (array bounds, ref casts)
— Garbage Collection

Given that context, what can be done to
Increase performance?

QUEST
SOFTWARE’ 34
simplici ork™

||||||||||||

hroug
Areas to Examine Prvetaka wiuga racle karini

Examine performance at 3 or 4 levels

App Server

QUEST
SOFTWARE® G
Simplicity At Work™

hroug
Platform: Physical Memory

By far the most important resource

— Address the needs of your running application plus that of the
underlying JVM

Examine your JVM'’s paging characteristics

— On a memory-constrained system with virtual memory (where
much of the process resides in the paging file/partition), the
reachability test of garbage collection can cause excessive
paging activity

QUEST
36

||||||||||||

Presenter�
Presentation Notes�
On a memory-constrained system with virtual memory (where much of the process resides in the paging file/partition), the reachability test of Garbage Collection can cause excessive paging activity.

�

hroug

Platform: Physical Memory
While your application is running, observe the page fault
activity of the JVM running your application
— Especially during GC events which you can monitor via —-verbose:gc

Excessive paging activity indicates that the OS doesn’t have
enough physical memory available to run your JVM
efficiently

Solution

— Reduce # of applications running concurrently
— Increase physical memory

QUEST
SOFTWARE’

i ;i 817
Simplicity At Work

hrounQ
Rlatferm: CPU

The faster, the better

— Your overall CPU utilization rate should be below 75%

Multiprocessor (MP)

— To take advantage of a multiprocessor environment
* the JVM must support native threads
— all modern Java 2 VMs use native threads
e your Java application must be multithreaded

QUEST
SOFTWARE' &

Simplicity At Work™

hrounQ
Java-virtual Machines

JVM performance has been steadily

Increasing

— Bytecode execution strategies
— Memory management & garbage collection
— Native thread support and sync overhead

Competition among JVM vendors

— The specification permits a great deal of freedom for
Implementation choices

QUEST
SOFTWARE' &
Simplici ork™

||||||||||||

hroug

Application Server Tuning

There are a number of things you can do to
Improve the performance of your application
server.
— Install native performance packs (if available)
— modify shared resource settings
« JDBC Connection Pools
 EJB Pool Size
 Thread Pool Size

QUEST
SOFTWARE’ 40

Simplicity At Work™

hroung

Framework-based Development

Java development is Advantages
undertaken in the - Productivity
context of application " 2‘-‘:”““ [{;thfm“m
—~ Software Correctness
frameworks:
- Persistence Frameworks .
. Hibarnale Pit-falls
. JPA - Incomplete knowledge on use of
+ 1Batis SQLMaps S
: ; — Incorrect Assumptions about
- Presentation Layer Frameworis framework
* JSF : - Unforeseen consequences of
* AJAX-Dojo, HTML, framework use
JavaScript
* JSP
- Middle Tier Frameworks
* EJB 3.0

* The Spring Framework

QUEST
SOFTWARE’

i 41
Simplicity At Work™ y

| . . hroung
Localized Performance Optimizations...........om

Pareto Principle
— You get 80 percent of the result from 20 percent of the effort

The question is: Which 20 percent?

— Programmers are notoriously bad at subjectively identifying
performance bottlenecks in their application

— Don’t waste time optimizing code that is rarely used
You need objective information to identify the
critical performance path within your
application

— Refining the methods along this path will give you the
most benefit for the time you invest

QUEST
SOFTWARE’

implicity At Work™

42

hroug
Performance Investigation

Features in JProbe

Performance snapshots

— Captures the performance of your application
between two points in time

QUEST
SOFTWARE’ 43

Simplicity At Work™

hroug
Integrating Performance Analysis into Your . ik

Development Cycle

Before undertaking performance analysis

— Use JProbe Memory Debugger’s heap analysis to
ensure that you've resolved any loitering object
problems

Undertake your performance analysis under
realistic conditions

QUEST
SOFTWARE’ a4

Simplicity At Work™

hroug
Integrating Performance Analysis iNt0 e s e e

Your Development Cycle

Make it Work Right

then

Make it Work Fast

QUEST
SOFTWARE® 45
Simplicity At Work™ :

hroug
The Best Time to Tune S

When is the best time to tune code?
— Development

» Good for small modules, may be too soon for system-wide
performance analysis

— Integration
* But now it may be difficult to get down deep to fix problems
— QA
* QA people often don’t have the application knowledge to tune
performance effectively

— Pre-production/Staging

» Usually where final capacity plan is determined - often too late to
tune

— Production
» Technically possible, but not recommended

QUEST
SOFTWARE’ 46

Simplicity At Work™

hrounQ

Threads

A thread is an independent sequence of

program code execution within a running
process

Single threaded model of computation
— Single thread of execution within a single process
— The model most programmers are familiar with

Multithreaded model of computation

— Several threads of execution within a single process
— Many benefits, but also new pitfalls

QUEST
SOFTWARE’

e 5 47
Simplicity At Work

hroug

Java Threads

The notion of threading is so ingrained in Java that it's
almost impossible to write all but the simplest
programs without creating and using threads. And
many of the classes within the Java API are already
threaded, so that you often are using multiple

threads without realizing it.

Scott Oaks and Henry Wong
Java Threads (2nd Edition)
O’Reilly and Associates, 1999

QUEST
SOFTWARE’ 48

Simplicity At Work™

hroug
Issues- Multithreaded R —
Design

Creating and starting threads within an
application is not a problem

It's in the coordination and synchronization of
their work that problems typically arise

— Race Conditions

— Deadlocks

QUEST
SOFTWARE’ 49
Simplicity At Work™

||||||||||||

hroug

Race Conditions

A data race occurs when two concurrent
threads access a shared variable, and
— At least one access is a write operation, and

— The threads use no explicit mechanism to prevent
their accesses from being simultaneous

Two forms:
1. Read/Write race conditions
2. Write/Write race conditions

Race conditions arise from a failure to

coordinate, or synchronize, thread access to
a shared variable

QUEST
SOFTWARE’

S : 50
implicity At Work

hroug
Synchronizing Shared SR———

Resources

Historically, multithreaded applications have
used a variety of objects, such as semaphores
and monitors, to lock the critical sections of
code that access shared variables

Within Java

— Each object within the heap has a lock associated
with it

— The synchronized keyword is used to ensure that
critical sections of code (that access shared variables)
are executed by only one thread at any given time

QUEST
SOFTWARE’ 51

Simplicity At Work™

QUEST
SOFTWARE’

Simplicity At Work™

hroug

Deadlocks

A thread suffers from deadlock if it blocks
waiting for a condition that will never occur

Typically arises from the overuse of
synchronization

— There is a constant tension in multithreaded programs

between safety and liveness

In the classic deadlock case, a thread requires
access to a resource that is already locked by
a second thread, and that thread is trying to
access a resource that has already been
locked by the first

52

. hroung
Thread Investigation Part of JProbe Performance........

JE—

Detects thread deadlocks within your application

JProbe LaunchPad - *New Session _|

Application Settings

Configuration: |Diners |v| | Manage Configurations... |
[Ferformance Timing
[y Firters
[4 Trigoers @ Elapsed
o CPU

Collect Encapsulated

2 Hone
& Grouped
0 Full

Use Case Control

End-to-End Anahlysis (entire session is a use case)
Start Use Case at .JvM Launch
Finish Use Case at v Exit

rac e OCalion

Deadlock Detection

Detect Deadlocks

| Sawvne | | Save As... | I Run I | oM | | Cancel | | Help

QUEST
SOFTWARE® & 53

Simplicity At Work™ g

	Monitoring Java enviroment /�applications
	Java is Everywhere
	Slide Number 3
	Origins of Poor Performance
	Framework-Based Development
	Framework-Based Development
	Slide Number 7
	Memory Safety in Java
	Memory Safety in Java
	JVM Runtime Data Areas
	Java Memory Management
	Reachable Objects
	Reachable Objects & GC
	Reachable Objects & GC
	What is a “Memory Leak” in Java ?
	What is a “Memory Leak” in Java?
	Memory Leaks: C/C++ vs. Java
	What is a “Memory Leak” in Java?
	Loitering Objects
	Loitering Objects
	Failure to Remove Stale Object References from Data Structures
	Reference Management
	Object Cycling
	Object Cycling
	Slide Number 25
	The JProbe Java Profiling Solution
	Development Best Practice Workflow
	Slide Number 28
	JProbe Memory Debugger
	JProbe Profiler
	JProbe Coverage
	JProbe Architecture
	Garbage Monitor
	Achieving Faster Performance
	Areas to Examine
	Platform: Physical Memory
	Platform: Physical Memory
	Platform: CPU
	Java Virtual Machines
	Application Server Tuning
	Slide Number 41
	Localized Performance Optimizations
	Performance Investigation Features in JProbe
	Integrating Performance Analysis into Your Development Cycle
	Integrating Performance Analysis into Your Development Cycle
	The Best Time to Tune
	Threads
	Java Threads
	Issues in Multithreaded Design
	Race Conditions
	Synchronizing Shared Resources
	Deadlocks
	Thread Investigation Part of JProbe Performance

