
Uroš Majcen
uros@quest-slo.com

Monitoring Java enviroment /
applications

2

You Can Expect More.

Java is Everywhere

With the help of Java Technology, and the Jet
Propulsion Laboratory (JPL), scientists can control the
Mars Rover all the way from planet Earth.

The Blackberry, Android and many other PDAs and cell
phones use Java as an operating system.

Many car companies including BMW have on-board
computer systems that are run by Java.

Java in Mars Rover

Smart Phones

BMW

Presenter�
Presentation Notes�
Because Java is portable – Java applications are running all around us on devices you may not normally associate with a computer!

For example, the famous Mars Rover was controlled in real time, from earth, by a Java application written by NASA scientists.

The Blackberry device and other mobile phones and PDA’s run Java as do many on-board computer systems in today’s cars.

The Bottom-line, and the beauty of Java, is it is not restricted by the platform or operating system it runs on. Java can run on Windows, Apple, Unix, or proprietary mobile systems such as the Blackberry.�

http://mars.jpl.nasa.gov/mer/gallery/spacecraft/browse/rover1_br.jpg

3

You Can Expect More.

Application Design
and Performance

4

You Can Expect More.

Origins of Poor Performance

• Majority of Java performance
problems arise from:
– Memory-Related Problems
– Algorithm-Related Problems

• The most dramatic improvements
in performance are often made at
the application level
– Fast hardware and highly tuned

JVMs cannot overcome the
inherent limitations of a poorly
designed application

Presenter�
Presentation Notes�
The key here is that throwing hardware at the above problems won’t solve it!

�

5

You Can Expect More.

Framework-Based Development

• Java development is undertaken in the context of
application frameworks:

– JFC/Swing – J2EE (Servlet/JSP/EJB)

• Several advantages:
– Programmer Productivity
– Reduced Development Time
– Software Correctness

6

You Can Expect More.

Framework-Based Development

• Unfortunately, little consideration is given to the performance
characteristics of these frameworks
– Space and time costs
– Scalability

• Abstraction versus Implementation
– To achieve good performance, you have to have some

insight into the underlying implementation
• You need a toolset that provides a deep level of insight into your

Java software

7

You Can Expect More.

Memory and Performance
Issues in Java

8

You Can Expect More.

Memory Safety in Java

• Memory safety was a key aspect in the design of...

– The Java Language
• Absence of any form of pointer arithmetic
• Can not directly reclaim object memory

– And the Java Virtual Machine (JVM)
• Bytecode instruction set
• Runtime checks (array bounds, reference casts)
• Garbage collection

9

You Can Expect More.

Memory Safety in Java

• Entire classes of memory-related problems were eliminated
– Buffer overruns
– De-referencing stale pointers
– Memory leaks

• However memory management issues remain
– Loitering Objects
– Object Cycling

• Either of these issues can easily undermine the performance of
your application

10

You Can Expect More.

JVM Runtime Data Areas

• Heap
– The common memory pool where all objects and arrays are

stored

• Thread Stack(s)
– One stack per thread of execution
– Each stack consists of a series of method frames (one per

called method) which contain the method arguments and
return value, the local variables within the method and a
bytecode operand stack for intermediate results

• Method Area
– Maintains the data structures for each loaded class in the JVM

Heap

Thread
Stack

Method
Area

(Java program)
executing

within the JVM

(Java program
and JVM)
executing

within the OS

JVM

Thread
Stack

...

11

You Can Expect More.

Java Memory Management

• Central to Java’s memory management subsystem is the notion of
garbage collection (gc)
– Removes objects that are no longer needed
– Undecidable in general, so Java uses an approximation...

• Removes objects that are no longer reachable (accessible to the
program at the beginning of a garbage collection cycle)

– The reachability test starts at the heap’s root set

12

You Can Expect More.

Root Set

Heap

Reachable Objects
• Elements within the root set directly refer to objects within the heap of the

JVM

Reference variables within those objects refer to further
objects within the Heap (indirectly reachable from the
Root Set)

13

You Can Expect More.

Reachable Objects & GC

• At the beginning of a GC cycle, objects within the heap can be
considered to be in one of two progressive “states”:
– Allocated

• Exists within the JVM’s heap
– Reachable

• A path exists (directly or indirectly) from a member of the root
set, through a sequence of references, to that object

14

You Can Expect More.

Reachable Objects & GC

Allocated

Reachable

At the
beginning of a
GC cycle,
objects that
are allocated
but no longer
reachable are
reclaimed by
the Garbage
Collector

15

You Can Expect More.

What is a “Memory Leak” in Java ?

• Memory leaks (as traditionally defined in C/C++) cannot occur in
Java
– That memory is reclaimed by the Garbage Collector

• However, Java programs can still exhibit the macro-level
symptoms of traditional memory leaks
– Heap size seemingly grows without bounds

• Occurs when objects that have outlived their usefulness to the
application remain within the heap through successive garbage
collections

16

You Can Expect More.

What is a “Memory Leak” in Java?

• We can extend the set of object states to three:
– Allocated

• Exists within the JVM’s heap

– Reachable
• A path exists (directly or indirectly) from a member of the root set,

through a sequence of references, to that object

– Live
• From the intent of the application’s design, the program will use the

object (meaning at least one of its public fields will be accessed and/or
one of its public methods will be invoked) along some future path of
execution

17

You Can Expect More.

Memory Leaks: C/C++ vs. Java

• Memory leak in C/C++
– The object has been allocated, but it’s not reachable

• malloc()/new, but forgot to free()/delete before overwriting
the pointer to the object

• “Memory leak” in Java
– The object is reachable, but it’s not live

• The object has reached the end of its designed lifecycle and should
be reclaimed, but an erroneous reference to it prevents the object
from being reclaimed by the GC

– Object is reachable to the GC, but the code to fix the leak may not be
available to us
• e.g. private reference field within an obfuscated class that you

don’t have the source code to

18

You Can Expect More.

What is a “Memory Leak” in Java?

Allocated

Reachable

Live

“Memory leak”
in Java

Memory leak in
C/C++ (handled
by JVM’s GC)

19

You Can Expect More.

Loitering Objects

• The term “Memory Leak” has a lot of historical context from
C/C++ and it doesn’t accurately describe the problem as it
pertains to Java

• New term: Loitering Object or Loiterer
– An object that remains within the Heap past its useful life to

the application
– Arise from an invalid reference that makes the object

reachable to the GC

20

You Can Expect More.

Loitering Objects

• Impact can be very severe
– Rarely a single object, but an entire sub-graph of

objects
• A single lingering reference can have massive memory

impact (and a significant performance impact)
– Overall process requires more memory than necessary
– JVM’s memory subsystem works harder
– In the worst case, your Java application will throw an

OutOfMemoryError and terminate

Unintentional
reference

21

You Can Expect More.

Failure to Remove Stale Object References from
Data Structures

Object obj = new BigObject();
set.add(obj);
...

... // Object is at the end of its life, but
obj = null; // we forgot to remove it from the set !

Object obj = new BigObject();
set.add(obj);
...

...
set.remove(obj) // Remove the object first !
obj = null;

22

You Can Expect More.

Reference Management

• The key to effective memory management in Java is effective
reference management

• What undermines effective reference management ?
– Lack of awareness of the issue
– Bad habits from C/C++ development
– Class Libraries and Application Frameworks

• Ill-defined reference management policies
• Encapsulate flawed reference assignments
• Tool (IDEs and others) generated software

23

You Can Expect More.

Object Cycling

• One of the principal causes of performance loss in Java is the
excessive creation of short life cycle objects

– Objects typically exist only within the scope of a method

• Performance loss is due to...
– Memory allocation within the JVM heap
– Object initialization via chain of constructor calls
– Enhanced garbage collection activity

24

You Can Expect More.

Object Cycling

• As a performance investigator, you want to identify those
methods in your application-level use case that are
creating objects that are soon reclaimed by the garbage
collector

• They are your first candidates for refactoring to improve
performance

25

You Can Expect More.

JProbe

Presenter�
Presentation Notes�
How can we help �you get more?�

26

You Can Expect More.The JProbe Java Profiling
Solution

• Primary Capabilities
– Identify and resolve memory allocation issues to ensure program

efficiency and stability

– Identify and resolve code bottlenecks to maximize program
performance and scalability

– Identify unexecuted lines of code during performance testing to
ensure full test coverage

– Enable performance test automation and metrics reporting to
boost productivity and save valuable time

Presenter�
Presentation Notes�
We know JProbe has all these awesome capabilities….but now overall Java performance profiling just got more efficient through improved data JProbe is the leading Java profiling solution in the market that resolves memory allocation issues, code, bottlenecks, and unexecuted lines of code. JProbe 8.0 continues to deliver this same depth of capabilities, but we believe now in a more streamlined and efficient way enabling you to deliver high quality, production ready applications even faster and with more confidence than ever before!

�

27

You Can Expect More.

Development Best Practice Workflow

28

You Can Expect More.

JProbe Memory Debugger
JProbe Profiler
JProbe Coverage

Performance tuning tools

JProbe

Presenter�
Presentation Notes�
Works with virtually any server

Supports all major IDEs

Eliminates expensive memory recycling and reduces overall memory consumption

Fine tunes data collection with advanced API

Predicts problems before they happen

Improves applications’ performance�

29

You Can Expect More.

JProbe Memory Debugger

• Pinpoint underlying causes of
memory leaks

• Dramatically reduce memory
consumption

• Quickly identify methods that
create excessive numbers of
short-lived objects

Presenter�
Presentation Notes�
New Feature: Aggregate Footprint Analysis

�

30

You Can Expect More.

JProbe Profiler

• Uncover performance
bottlenecks

• Gather line-level metrics on
your running program

• Deadlock Detection

31

You Can Expect More.

JProbe Coverage

• Identify and quantify untested
code

• Merge line-level data from
different test runs

• Generate reports in HTML,
XML, Text or PDF

• Conditional Code Analysis

Presenter�
Presentation Notes�
Big thing with Coverage:

No need to recompile (compared to Clover)

Automate with Ant tasks

Conditional Coverage:

Check internal logic for conditions

�

32

You Can Expect More.JProbe Architecture

Console Engine

App Servers
Java

developer

eclipse
Plug-in

JProbe

eclipse
IDE

M P C

M CP

33

You Can Expect More.

Garbage Monitor
• Identifies the type and number of objects

reclaimed after each garbage collection and
their allocation points within your code

• Those methods are the candidates for
refactoring to lessen the excessive creation of
short-lived objects

34

You Can Expect More.
Achieving Faster Performance

• Most frequent criticism of Java

• Nature of the Java Execution Model
– Platform Independence
– Runtime Checks (array bounds, ref casts)
– Garbage Collection

• Given that context, what can be done to
increase performance?

35

You Can Expect More.
Areas to Examine

• Examine performance at 3 or 4 levels

Platform

Application

JVM Execution
Context

App Server Frameworks

36

You Can Expect More.

Platform: Physical Memory

• By far the most important resource
– Address the needs of your running application plus that of the

underlying JVM

• Examine your JVM’s paging characteristics
– On a memory-constrained system with virtual memory (where

much of the process resides in the paging file/partition), the
reachability test of garbage collection can cause excessive
paging activity

Presenter�
Presentation Notes�
On a memory-constrained system with virtual memory (where much of the process resides in the paging file/partition), the reachability test of Garbage Collection can cause excessive paging activity.

�

37

You Can Expect More.

Platform: Physical Memory
• While your application is running, observe the page fault

activity of the JVM running your application
– Especially during GC events which you can monitor via –verbose:gc

• Excessive paging activity indicates that the OS doesn’t have
enough physical memory available to run your JVM
efficiently

• Solution
– Reduce # of applications running concurrently
– Increase physical memory

38

You Can Expect More.

Platform: CPU

• The faster, the better
– Your overall CPU utilization rate should be below 75%

• Multiprocessor (MP)
– To take advantage of a multiprocessor environment

• the JVM must support native threads
– all modern Java 2 VMs use native threads

• your Java application must be multithreaded

39

You Can Expect More.

Java Virtual Machines

• JVM performance has been steadily
increasing
– Bytecode execution strategies
– Memory management & garbage collection
– Native thread support and sync overhead

• Competition among JVM vendors
– The specification permits a great deal of freedom for

implementation choices

40

You Can Expect More.

Application Server Tuning

• There are a number of things you can do to
improve the performance of your application
server:
– install native performance packs (if available)
– modify shared resource settings

• JDBC Connection Pools
• EJB Pool Size
• Thread Pool Size

41

You Can Expect More.

42

You Can Expect More.Localized Performance Optimizations

• Pareto Principle
– You get 80 percent of the result from 20 percent of the effort

• The question is: Which 20 percent?
– Programmers are notoriously bad at subjectively identifying

performance bottlenecks in their application
– Don’t waste time optimizing code that is rarely used

• You need objective information to identify the
critical performance path within your
application
– Refining the methods along this path will give you the

most benefit for the time you invest

43

You Can Expect More.
Performance Investigation
Features in JProbe

• Performance snapshots
– Captures the performance of your application

between two points in time

44

You Can Expect More.
Integrating Performance Analysis into Your
Development Cycle

• Before undertaking performance analysis
– Use JProbe Memory Debugger’s heap analysis to

ensure that you’ve resolved any loitering object
problems

• Undertake your performance analysis under
realistic conditions

45

You Can Expect More.
Integrating Performance Analysis into
Your Development Cycle

Make it Work Right
then

Make it Work Fast

46

You Can Expect More.
The Best Time to Tune

• When is the best time to tune code?
– Development

• Good for small modules, may be too soon for system-wide
performance analysis

– Integration
• But now it may be difficult to get down deep to fix problems

– QA
• QA people often don’t have the application knowledge to tune

performance effectively
– Pre-production/Staging

• Usually where final capacity plan is determined - often too late to
tune

– Production
• Technically possible, but not recommended

47

You Can Expect More.

Threads
• A thread is an independent sequence of

program code execution within a running
process

• Single threaded model of computation
– Single thread of execution within a single process
– The model most programmers are familiar with

• Multithreaded model of computation
– Several threads of execution within a single process
– Many benefits, but also new pitfalls

48

You Can Expect More.

Java Threads
The notion of threading is so ingrained in Java that it’s

almost impossible to write all but the simplest
programs without creating and using threads. And

many of the classes within the Java API are already
threaded, so that you often are using multiple

threads without realizing it.

Scott Oaks and Henry Wong
Java Threads (2nd Edition)

O’Reilly and Associates, 1999

49

You Can Expect More.

Issues in Multithreaded
Design

• Creating and starting threads within an
application is not a problem

• It’s in the coordination and synchronization of
their work that problems typically arise
– Race Conditions
– Deadlocks

50

You Can Expect More.

Race Conditions
• A data race occurs when two concurrent

threads access a shared variable, and
– At least one access is a write operation, and
– The threads use no explicit mechanism to prevent

their accesses from being simultaneous
• Two forms:

1. Read/Write race conditions
2. Write/Write race conditions

• Race conditions arise from a failure to
coordinate, or synchronize, thread access to
a shared variable

51

You Can Expect More.
Synchronizing Shared
Resources

• Historically, multithreaded applications have
used a variety of objects, such as semaphores
and monitors, to lock the critical sections of
code that access shared variables

• Within Java
– Each object within the heap has a lock associated

with it
– The synchronized keyword is used to ensure that

critical sections of code (that access shared variables)
are executed by only one thread at any given time

52

You Can Expect More.

Deadlocks
• A thread suffers from deadlock if it blocks

waiting for a condition that will never occur
• Typically arises from the overuse of

synchronization
– There is a constant tension in multithreaded programs

between safety and liveness

• In the classic deadlock case, a thread requires
access to a resource that is already locked by
a second thread, and that thread is trying to
access a resource that has already been
locked by the first

53

You Can Expect More.Thread Investigation Part of JProbe Performance

• Detects thread deadlocks within your application

	Monitoring Java enviroment /�applications
	Java is Everywhere
	Slide Number 3
	Origins of Poor Performance
	Framework-Based Development
	Framework-Based Development
	Slide Number 7
	Memory Safety in Java
	Memory Safety in Java
	JVM Runtime Data Areas
	Java Memory Management
	Reachable Objects
	Reachable Objects & GC
	Reachable Objects & GC
	What is a “Memory Leak” in Java ?
	What is a “Memory Leak” in Java?
	Memory Leaks: C/C++ vs. Java
	What is a “Memory Leak” in Java?
	Loitering Objects
	Loitering Objects
	Failure to Remove Stale Object References from Data Structures
	Reference Management
	Object Cycling
	Object Cycling
	Slide Number 25
	The JProbe Java Profiling Solution
	Development Best Practice Workflow
	Slide Number 28
	JProbe Memory Debugger
	JProbe Profiler
	JProbe Coverage
	JProbe Architecture
	Garbage Monitor
	Achieving Faster Performance
	Areas to Examine
	Platform: Physical Memory
	Platform: Physical Memory
	Platform: CPU
	Java Virtual Machines
	Application Server Tuning
	Slide Number 41
	Localized Performance Optimizations
	Performance Investigation Features in JProbe
	Integrating Performance Analysis into Your Development Cycle
	Integrating Performance Analysis into Your Development Cycle
	The Best Time to Tune
	Threads
	Java Threads
	Issues in Multithreaded Design
	Race Conditions
	Synchronizing Shared Resources
	Deadlocks
	Thread Investigation Part of JProbe Performance

